

Alexander Wilson

Oberlin College

joint work with Nate Harman (UGA)

[Schur Modules and the Kronecker problem](#page-2-0)

[Lexicographic Bitableaux](#page-15-0)

[Crystals](#page-19-0)

Section 1

[Schur Modules and the Kronecker problem](#page-2-0)

Partitions and Tableaux

A partition $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ of *n* is a list of weakly decreasing positive integers summing to n. For example $(5, 3, 3, 1)$ is a partition of 12.

Partitions and Tableaux

A partition $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ of n is a list of weakly decreasing positive integers summing to n. For example $(5, 3, 3, 1)$ is a partition of 12.

The Young diagram of a partition is an array of boxes where row i has λ_i boxes. For example, the Young diagram of $(5, 3, 3, 1)$ is

Partitions and Tableaux

A partition $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ of n is a list of weakly decreasing positive integers summing to n. For example $(5, 3, 3, 1)$ is a partition of 12.

The Young diagram of a partition is an array of boxes where row i has λ_i boxes. For example, the Young diagram of (5, 3, 3, 1) is

A tableau of shape λ is a filling of λ 's Young diagram with objects.

Given a vector space V with basis $\{v_1, \ldots, v_n\}$, write $S^{\lambda}(V)$ for the vector space with basis indexed by tableaux of shape λ whose boxes are filled with basis elements v_i whose indices weakly increase along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

Given a vector space V with basis $\{v_1, \ldots, v_n\}$, write $S^{\lambda}(V)$ for the vector space with basis indexed by tableaux of shape λ whose boxes are filled with basis elements v_i whose indices weakly increase along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

Given a vector space V with basis $\{v_1, \ldots, v_n\}$, write $S^{\lambda}(V)$ for the vector space with basis indexed by tableaux of shape λ whose boxes are filled with basis elements v_i whose indices weakly increase along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

These are called semistandard Young tableaux.

The Schur module $S^{\lambda}(V)$ is a representation of $GL(V)$. This means that there is an action of $GL(V)$ (which we can think of as $n \times n$ matrices) on $S^{\lambda}(V)$.

Let $\mathcal{V}=\mathbb{R}^2.$ Then a 2×2 matrix acts on $S^{\lambda}(V)$ in the following way.

The modules $S^{\lambda}(V)$ for $\ell(\lambda) \leq \mathsf{dim}(V)$ are the irreducible (polynomial) representations of the group $GL(V)$. This means that any (polynomial) representation of $GL(V)$ decomposes into a direct sum of Schur modules.

The Kronecker Problem

Now let's consider two vector spaces V and W and their tensor product $V \otimes W$. The Schur module

 $S^{\lambda}(V\otimes W)$

is a representation of $GL(V\otimes W)$.

The Kronecker Problem

Now let's consider two vector spaces V and W and their tensor product $V \otimes W$. The Schur module

 $S^{\lambda}(V\otimes W)$

is a representation of $GL(V\otimes W)$.

This module must then have a decomposition into irreducible representations of the form $S^\mu(V)\otimes S^\nu(W)$:

$$
\mathcal{S}^{\lambda}(V\otimes W)\cong \bigoplus_{\mu,\nu}g_{\lambda,\mu,\nu}S^{\mu}(V)\otimes S^{\nu}(W).
$$

The Kronecker Problem

The coefficients $g_{\lambda,\mu,\nu}$ in

$$
\mathcal{S}^{\lambda}(V\otimes W)\cong \bigoplus_{\mu,\nu}g_{\lambda,\mu,\nu}S^{\mu}(V)\otimes S^{\nu}(W)
$$

are called the Kronecker coefficients. The Kronecker problem asks for a combinatorial interpretation for these coefficients.

Section 2

[Lexicographic Bitableaux](#page-15-0)

If V has basis $\{v_1, \ldots, v_n\}$ and W has basis $\{w_1, \ldots, w_m\}$, then $V \otimes W$ has basis

$$
\{e_{(i,j)}:1\leq i\leq n,1\leq j\leq m\}
$$

where $e_{(i,j)}=v_i\otimes w_j$. We order this basis lexicographically where $(i_1, j_1) < (i_2, j_2)$ if $i_1 < i_2$ or $i_1 = i_2$ and $j_1 < j_2$.

Lexicographic Bitableaux

Now, a basis for $S^{\lambda}(V\otimes W)$ consists of tableaux filled with pairs of positive integers which are semistandard with respect to the lexicographic order. We call these objects lexicographic bitableaux.

Lexicographic Bitableaux

Now, a basis for $S^{\lambda}(V\otimes W)$ consists of tableaux filled with pairs of positive integers which are semistandard with respect to the lexicographic order. We call these objects lexicographic bitableaux.

Section 3

[Crystals](#page-19-0)

Crystals

Given a word w (i.e. a sequence of numbers), let $f_i(w)$ be defined as follows: \mathbf{r}

$$
f_2(12213213)=12313213\\
$$

or

$$
12213213 \xrightarrow{2} 12313213.
$$

Connecting all words with a given max entry via these arrows gives a graph structure on words called a crystal.

Crystals

Each connected crystal on words corresponds to a unique tableau shape.

representation $S^{\lambda}(V)$.

Crystals

Each connected crystal on words corresponds to a unique tableau shape.

This crystal encodes the structure of the corresponding irreducible representation $S^{\lambda}(V)$.

Core idea: If you can put a crystal structure on the representation you want to study, the connected components tell you what the irreducible pieces are.

Crystals on Bitableaux

Given a bitableau T, we extract words $w^{i}(T)$ for $i\geq 1$. For example, to extract $\mathsf{w}^2(\mathsf{T})$, we first ignore all boxes except for those with first entry 2.

Then we read the second entry from each box from left-to-right starting at the bottom row and moving to the top:

$$
w^2(T)=321
$$

Crystals on Bitableaux

Putting all these words together, we extract a single word

$$
w^{\bullet}(T)=w^1(T)w^2(T)...
$$

$$
w^{\bullet}(T)=2333211.
$$

Crystals on Bitableaux

To apply f_i to T, we simply apply the usual crystal operation to this word:

Takeaway

This method allows us to decompose $S^{\lambda}(V\otimes W)$ as *either* a $GL(V)$ -representation or a $GL(W)$ -representation.

To resolve the Kronecker problem, we need two crystal structures—one acting on the first entries, the other acting on second entries—that are compatible with each other.

