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Section 1

Schur Modules and the Kronecker problem



Partitions and Tableaux

A partition λ = (λ1, . . . , λ`) of n is a list of weakly decreasing

positive integers summing to n. For example (5, 3, 3, 1) is a
partition of 12.

The Young diagram of a partition is an array of boxes where row i

has λi boxes. For example, the Young diagram of (5, 3, 3, 1) is

A tableau of shape λ is a �lling of λ's Young diagram with objects.
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Schur Modules

Given a vector space V with basis {v1, . . . , vn}, write Sλ(V ) for
the vector space with basis indexed by tableaux of shape λ whose

boxes are �lled with basis elements vi whose indices weakly increase

along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

v1 v1 v2

v2 v3

v1 v4 v5

v3 v4

v1 v2 v2

v2 v3

v1 v2 v1

v2 v3



Schur Modules

Given a vector space V with basis {v1, . . . , vn}, write Sλ(V ) for
the vector space with basis indexed by tableaux of shape λ whose

boxes are �lled with basis elements vi whose indices weakly increase

along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

v1 v1 v2

v2 v3

v1 v4 v5

v3 v4

v1 v2 v2

v2 v3

v1 v2 v1

v2 v3



Schur Modules

Given a vector space V with basis {v1, . . . , vn}, write Sλ(V ) for
the vector space with basis indexed by tableaux of shape λ whose

boxes are �lled with basis elements vi whose indices weakly increase

along rows and strictly increase down columns.

Example

Two of the following tableaux correspond to basis vectors

1 1 2

2 3

1 4 5

3 4

1 2 2

2 3

1 2 1

2 3

These are called semistandard Young tableaux.



Schur Modules

The Schur module Sλ(V ) is a representation of GL(V ). This
means that there is an action of GL(V ) (which we can think of as

n × n matrices) on Sλ(V ).



Schur Modules

Let V = R2. Then a 2× 2 matrix acts on Sλ(V ) in the following

way.

[
0 1

2 3

]
.
v1 v1

v2
=

2v2 2v2

v1
+

2v2 2v2

3v2

= 4
v2 v2

v1
+ 12

v2 v2

v2

= −4
v1 v2

v2



Schur Modules

The modules Sλ(V ) for `(λ) ≤ dim(V ) are the irreducible

(polynomial) representations of the group GL(V ). This means that

any (polynomial) representation of GL(V ) decomposes into a direct

sum of Schur modules.



The Kronecker Problem

Now let's consider two vector spaces V and W and their tensor

product V ⊗W . The Schur module

Sλ(V ⊗W )

is a representation of GL(V ⊗W ).

This module must then have a decomposition into irreducible

representations of the form Sµ(V )⊗ Sν(W ):

Sλ(V ⊗W ) ∼=
⊕
µ,ν

gλ,µ,νS
µ(V )⊗ Sν(W ).
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The Kronecker Problem

The coe�cients gλ,µ,ν in

Sλ(V ⊗W ) ∼=
⊕
µ,ν

gλ,µ,νS
µ(V )⊗ Sν(W )

are called the Kronecker coe�cients. The Kronecker problem asks

for a combinatorial interpretation for these coe�cients.



Section 2

Lexicographic Bitableaux



Lexicographic Bitableaux

If V has basis {v1, . . . , vn} and W has basis {w1, . . . ,wm}, then
V ⊗W has basis

{e(i ,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

where e(i ,j) = vi ⊗ wj . We order this basis lexicographically where

(i1, j1) < (i2, j2) if i1 < i2 or i1 = i2 and j1 < j2.



Lexicographic Bitableaux

Now, a basis for Sλ(V ⊗W ) consists of tableaux �lled with pairs of

positive integers which are semistandard with respect to the

lexicographic order. We call these objects lexicographic bitableaux.

e(1,2)e(1,3)e(1,3)e(2,1)

e(2,3)e(2,2)

e(3,1)



Lexicographic Bitableaux

Now, a basis for Sλ(V ⊗W ) consists of tableaux �lled with pairs of

positive integers which are semistandard with respect to the

lexicographic order. We call these objects lexicographic bitableaux.
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Section 3

Crystals



Crystals

Given a word w (i.e. a sequence of numbers), let fi (w) be de�ned

as follows:
12213213

(1) Replace each i and i + 1 in w with )
and ( respectively.

1))1()1(

(2) Note the rightmost unmatched ). 1))1()1(

(3) Swap the corresponding i with i + 1. 12313213

We then write either

f2(12213213) = 12313213

or

12213213
2−→ 12313213.

Connecting all words with a given max entry via these arrows gives

a graph structure on words called a crystal.



Crystals

Each connected crystal on words corresponds to a unique tableau

shape.

111 112 122 222

113 123 223

133 233

333

1 1

2

1

2 2

1 1

2 2

1

2

212 213 313

211 323

311 312 322

2 2

11

2

1 1

2

321

This crystal encodes the structure of the corresponding irreducible

representation Sλ(V ).

Core idea: If you can put a crystal structure on the representation

you want to study, the connected components tell you what the

irreducible pieces are.
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Crystals on Bitableaux

Given a bitableau T , we extract words w i (T ) for i ≥ 1. For

example, to extract w2(T ), we �rst ignore all boxes except for

those with �rst entry 2.
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Then we read the second entry from each box from left-to-right

starting at the bottom row and moving to the top:

w2(T ) = 321



Crystals on Bitableaux

Putting all these words together, we extract a single word

w•(T ) = w1(T )w2(T ) . . .

T =

1

2

1

3

1

3

2

1

2

3

2

2

3

1

w•(T ) = 2333211.



Crystals on Bitableaux

To apply fi to T , we simply apply the usual crystal operation to

this word:

T =

1

2

1

3

1
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2

1

2
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2
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3

1

w•(T ) = 2333211

f1(2333211) = 2333212

f1(T ) =

1
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Takeaway

This method allows us to decompose Sλ(V ⊗W ) as either a

GL(V )-representation or a GL(W )-representation.

To resolve the Kronecker problem, we need two crystal

structures�one acting on the �rst entries, the other acting on

second entries�that are compatible with each other.



T H A N K

Y O U

!


	Schur Modules and the Kronecker problem
	Lexicographic Bitableaux
	Crystals

